Sunday, 9 November 2014

Genetic Algorithm



Matlab code for simple genetic algorithm

function genealgo
syms x
n = input ('value of n:');
Q = randi([-20 20],n,n);
p = 2*n;
i=1;
while i<=p
    X(i,:)= randi([0 1],n,1);          % chromosome matrix
    i = i+1;
end
h=1;
u=6;
while u>1
i=1;
while i<=p
    E(i,1)= X(i,:)*Q*transpose(X(i,:)); % E= Evaluated matrix
    F(i,1)= exp(E(i,1));               % F = Fitness matrix
    i=i+1;
end
S=0;
i=1;
while i<=p
    S=S+E(i,1);                 % S = sum of all evaluations
    i=i+1;
end
i=1;
while i<=p
    P(i,1)= E(i,1)/S ;           % P = probability matrix
    i=i+1;
end
i=1;
c=0;
while i<=p;
    c=c+P(i,1);
    C(i,1)=c;      % C = Cummulative of probability matrix
    i=i+1;
end
R=rand(p,1);
i=1;
while i<= p
    j=1;
    while R(i,1)> C(j,1)    % roulette wheel check
        j=j+1;
    end
    X(i,1)=X(j,1);        % reprodution
    i=i+1;
end
N=rand(p,1);
j=1;
i=1;
while i<=n
    if (N(i,1)<0.25);
        A(j,1)=i;
        j=j+1;
        i=i+1;             % chromosomes for cross over
    else
        i=i+1;
    end
end
i=1;
B=X(A(1,1),:);
while i< j-2
    c = randi([1 n],1,1);
    X(A(i,1),c:end)= X(A(i+1,1),c:end);           % cross over
    i=i+1;
end
 c = randi([1 n],1,1);
 X(A(j-2,1),c:end)= X(B(1,1),c:end);          

i=1;
j=1;
while i<= p
    while j<=n
        c=rand(1,1);
        if c < 0.05
            if X(i,j)== 0;
              X(i,j)=1;                % mutation
            else
                X(i,j)=0;   
            end
            j=j+1;
        else
            j=j+1;
        end
    end
    i=i+1;
end
i=1;
while i<=p
  E(i,1)= X(i,:)*Q*transpose(X(i,:)); % E= Evaluated matrix                                                                                                                       after a generation
  i=i+1;
end
disp(E)
u=std2(E);
disp(u)
disp(Q)
disp(X)
disp(h)
h=h+1;
end

%Cross over probability taken as 0.8
%Mutation probability taken as 0.05
%Q is randomly generated with it’s all values between 20 and -20
% standard deviataion < 1 is taken as stopping criteria


1) Generate chromosome-chromosome number of the population, and the initialization value of the genes chromosome-chromosome with a random value.
2) Evaluation of fitness value of chromosomes by calculating objective function.
3) Chromosomes selection (roulette wheel-reproduction)
4) Crossover
5) Mutation
6) New Chromosomes (Offspring)
7) Iterate the process till desired offspring are obtained.
8) Solution (Best Chromosomes)

No comments:

Post a Comment